(二)中文文本分类–机器学习算法原理与编程实践【澳门金沙总站】

By admin in 科技中心 on 2019年3月30日

原标题:用机器学习怎样鉴别不可描述的网站

本章知识点:中文分词,向量空间模型,TF-IDF方法,文本分类算法和评价指标
使用的算法:朴素的贝叶斯算法,KNN最近邻算法
python库:jieba分词,Scikit-Learning
本章目标:实现小型的文本分类系统
本章主要讲解文本分类的整体流程和相关算法

全文大约3500字。读完可能需要下面这首歌的时间


前两天教师节,人工智能头条的某个精神股东粉群里,大家纷纷向当年为我们启蒙、给我们带来快乐的老师们表达感激之情。

2.1 文本挖掘和文本分类的概念

1,文本挖掘:指从大量的文本数据中抽取事先未知的,可理解的,最终可使用的知识的过程,同时运用这些知识更好的组织信息以便将来参考。
简言之,就是从非结构化的文本中寻找知识的过程
2,文本挖掘的细分领域:搜索和信息检索(IR),文本聚类,文本分类,Web挖掘,信息抽取(IE),自然语言处理(NLP),概念提取。
3,文本分类:为用户给出的每个文档找到所属的正确类别
4,文本分类的应用:文本检索,垃圾邮件过滤,网页分层目录自动生成元数据,题材检测
5,文本分类的方法:一是基于模式系统,二是分类模型


很多人表示,他们的硬盘里,至今还保留着当时她们上课时候的视频。有一些现在网站上已经很难找到了,于是大家又纷纷开始互相交流跟随这些老师学习实践的心得体会。

2.2 文本分类项目

澳门金沙总站 1

中文语言的文本分类技术和流程:

1)预处理:去除文本的噪声信息:HTML标签,文本格式转换
2)中文分词:使用中文分词器为文本分词,并去除停用词
3)构建词向量空间:统计文本词频,生成文本的词向量空间
4 )
权重策略–TF-IDF方法:使用TF-IDF发现特征词,并抽取为反映文档主题的特征
5)分类器:使用算法训练分类器
6)评价分类结果:分类器的测试结果分析

👆禅师最喜欢的教师

2.2.1 文本预处理:

文本处理的核心任务:将非结构化的文本转换为结构化的形式,即向量空间模型

文本处理之前需要对不同类型的文本进行预处理

后来禅师想起来,另一个人工智能头条的精神股东粉群西部世界里,有人提到过他写了一篇Chat,利用
NLP 来鉴别是普通网站和不可描述网站,还挺有点意思,一起来看看吧。

文本预处理的步骤:

1,选择处理的文本的范围:整个文档或其中段落
2,建立分类文本语料库:
训练集语料:已经分好类的文本资源。(文件名:train_corpus_small)
测试集语料:待分类的文本语料(本项目的测试语料随机选自训练语料)(文件名:test_corpus)
3,文本格式转换:统一转换为纯文本格式。(注意问题:乱码)
4,检测句子边界:标记句子结束

互联网中蕴含着海量的内容信息,基于这些信息的挖掘始终是诸多领域的研究热点。当然不同的领域需要的信息并不一致,有的研究需要的是文字信息,有的研究需要的是图片信息,有的研究需要的是音频信息,有的研究需要的是视频信息。

2.2.2 中文分词介绍

1,中文分词:将一个汉字序列(句子)切分成一个单独的词(中文自然语言处理的核心问题)
2,中文分词的算法:基于概率图模型的条件随机场(CRF)
3,分词后文本的结构化表示:词向量空间模型,主题模型,依存句法的树表示,RDF的图表示
4,本项目的分词系统:采用jieba分词
5, jieba分词支持的分词模式:默认切分,全切分,搜索引擎切分
6,jieba分词的代码见文件:对未分词语料库进行分词并持久化对象到一个dat文件(创建分词后的语料文件:train_corpus_seg)

#coding=utf-8

import sys
import os
import jieba

reload(sys)
sys.setdefaultencoding('utf-8')    # 配置UTF-8输出环境

#定义两个函数,用于读取和保存文件

def savefile(savpath,content):   # 定义一个用于保存文件的函数
    fp = open(savepath,"wb")
    fp.write(content)
    fp.close()

def readfile(path):    # 定义一个用于读取文件的函数
    fp = open(path,"rb")
    content = fp.read()
    fp.close()
    return content    #函数返回读取的内容


# 以下是整个语料库的分词主程序

corpus_path = "train_corpus_small/"   # 未分词分类语料库路径
seg_path = "train_corpus_seg/"  # 分词后分类语料库路径

catelist = os.listdir(corpus_path) #os.listdir获取cor_path下的所有子目录

for mydir in catelist:       # 遍历所有子目录
    class_path = corpus_path+mydir+"/"  #构造分类子目录的路径
    seg_dir = seg_path+mydir+"/"  #构造分词后的语料分类目录

    if not os.path.exists(seg_dir):  # 是否存在目录,如果没有则创建
        os.makedirs(seg_dir)

    file_list = os.listdir(class_path)  # 获取目录下的所有文件

    for file_path in file_list:      # 遍历目录下的所有文件
        fullname = class_path+file_path    #文件路径
        content = readfile(full.name).strip()   # 读取文件,strip()用于移除字符串头尾指定的字符,即移除头尾的空格
        content = content.replace("\r\n","").strip()  # 将空格和换行替代为无
        content_seg = jieba.cut(content)    # 利用jieba分词

        savefile(seg_dir+file_path," ".join(content_seg))   # 调用函数保存文件,保存路径为:seg_dir+file_path,用空格将分词后的词连接起来

print "中文语料分词结束"


#############################################################################

# 为了便于后续的向量空间模型的生成,分词后的文本还要转换为文本向量信息并对象化
# 引入Scikit-Learn的Bunch类

from sklearn.datasets.base import Bunch
bunch = Bunch{target_name=[],label=[],filename=[],contents=[]}

# Bunch类提供键值对的对象形式
#target_name:所有分类集名称列表
#label:每个文件的分类标签列表
#filename:文件路径
#contents:分词后的文件词向量形式

wordbag_path = "train_word_bad/train_set.dat"  #分词语料Bunch对象持久化文件路径
seg_path = "train_corpus_seg/"   #分词后分类语料库路径(同上)

catelist = os.listdir(seg_path)  # 获取分词后语料库的所有子目录(子目录名是类别名)
bunch.target_name.extend(catelist)   # 将所有类别信息保存到Bunch对象

for mydir in catelist:     # 遍历所有子目录
    class_path = seg_path+mydir+"/" # 构造子目录路径
    file_list = os.listdir(class_path)    # 获取子目录内的所有文件
    for file_path in file_list:     # 遍历目录内所有文件
        fullname = class_path+file_path    # 构造文件路径
        bunch.label.append(mydir)      # 保存当前文件的分类标签(mydir为子目录即类别名)
        bunch.filenames.append(fullname)  # 保存当前文件的文件路径(full_name为文件路径)
        bunch.contents.append(readfile(fullname).strip())  # 保存文件词向量(调用readfile函数读取文件内容)

file_obj = open(wordbad_path,"wb")  # 打开前面构造的持久化文件的路径,准备写入
pickle.dump(bunch,file_obj)   # pickle模块持久化信息,bunch是要持久化的文件,已添加了信息。file_obj是路径
file_obj.close()
# 之所以要持久化,类似游戏中途存档,分词后,划分一个阶段,将分词好的文件存档,后面再运行就不用重复分词了

print "构建文本对象结束!!"      

# 持久化后生成一个train_set.dat文件,保存着所有训练集文件的所有分类信息
# 保存着每个文件的文件名,文件所属分类和词向量

澳门金沙总站 2

2.2.3 Scikit-Learn库简介

本文就是根据网页的文字信息来对网站进行分类。当然为了简化问题的复杂性,将以一个二分类问题为例,即如何鉴别一个网站是不可描述网站还是普通网站。你可能也注意
QQ
浏览器会提示用户访问的网站可能会包含色情信息,就可能用到类似的方法。本次的分享主要以英文网站的网站进行分析,主要是这类网站在国外的一些国家是合法的。其他语言的网站,方法类似。

1,模块分类:

1)分类和回归算法:广义线性模型,支持向量机,kNN,朴素贝叶斯,决策树,特征选择
2)聚类算法:K-means
3)维度约简:PCA
4)模型选择:交叉验证
5)数据预处理:标准化,去除均值率和方差缩放,正规化,二值化,编码分类特征,缺失值的插补

一,哪些信息是网站关键的语料信息

2.2.4 向量空间模型:文本分类的结构化方法

1,向量空间模型:将文本表示为一个向量,该向量的每个特征表示为文本中出现的词
2,停用词:文本分类前,自动过滤掉某些字或词,以节省储存空间。根据停用词表去除,表可下载。代码见文件

搜索引擎改变了很多人的上网方式,以前如果你要上网,可能得记住很多的域名或者
IP。但是现在如果你想访问某个网站,首先想到的是通过搜索引擎进行关键字搜索。比如我想访问一个名为村中少年的博客,那么只要在搜索引擎输入村中少年这类关键词就可以了。图1是搜索村中少年博客时候的效果图:

2.2.5 权重策略:TF-IDF方法

1,词向量空间模型:将文本中的词转换为数字,整个文本集转换为维度相等的词向量矩阵(简单理解,抽取出不重复的每个词,以词出现的次数表示文本)
2,归一化:指以概率的形式表示,例如:0,1/5,0,0,1/5,2/5,0,0,也称为:词频TF(仅针对该文档自身)
3,词条的文档频率IDF: 针对所有文档的词频

澳门金沙总站 3

TF-IDF权重策略:计算文本的权重向量

1,TF-IDF的含义:词频逆文档频率。如果某个词在一篇文章中出现的频率高(词频高),并且在其他文章中很少出现(文档频率低),则认为该词具有很好的类别区分能力,适合用来分类。IDF其实是对TF起抵消作用。
2,词频TF的定义:某一个给定的词语在该文件中出现的频率(对词数的归一化)
3,逆文件频率IDF:某一特定词语的IDF,由总文件数除以包含该词语的文件的数目,再将商取对数
4,TF-IDF的计算:TF与IDF的乘积
5,将分词后的持久化语料库文件dat利用TF-IDF策略转化,并持久化的代码见文件

#coding=utf-8

import sys
import os 
from sklearn.datasets.base import Bunch  # 导入Bunch类
import cPickle as pickle  #导入持久化类

from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer   # TF-IDF向量转换类
from sklearn.feature_extraction.text import TfidfVectorizer   # TF-IDF向量生成类


reload(sys)
sys.setdefaultencoding('utf-8')  #UTF-8输出环境

# 读取和写入Bunch对象的函数

def readbunchobj(path):   # 读取bunch对象函数
    file_obj = open(path,"rb")
    bunch = pickle.load(file_obj)  # 使用pickle.load反序列化对象
    file_obj.cloase()
    return bunch

def writebunchobj(path,bunchobj):   # 写入bunch对象函数
    file_obj = open(path,"wb")
    pickle.dump(bunchobj,file_obj)   # 持久化对象
    file_obj.close()

###################################从训练集生成TF-IDF向量词袋

# 1,导入分词后的词向量Bunch对象
path = "train_word_bag/train_set.dat"  # 词向量空间保存路径(就是分词后持久化的文件路径)
bunch = readbunchobj(path)   # 调用函数读取bunch对象,赋值给bunch

# 2,构想TF-IDF词向量空间对象,也是一个Bunch对象
tfidfspace = Bunch(target_name=bunch.target_name,label=bunch.label,filenames=bunch.filenames,tdm=[],vocabulary=[])     # 构建Bunch对象,将bunch的部分值赋给他

# 3,使用TfidfVectorizer初始化向量空间模型
vectorizer = TfidfVectorizer(stop_words=stpwrdlist,sublinear_tf=True,max_df=0.5)
transformer=TfidfTransformer()   # 创建一个该类的实例,该类会统计每个词语的TF-IDF权值
# 文本转化为词频矩阵,单独保存字典文件
tfidfspace.tdm = vectorilzer.fit_transform(bunch.contents)  # 将bunch.content的内容……赋给模型的tdm值
tfidfspace.vocabulary = vectorizer.vocabulary   # ????????????????

# 4,持久化TF-IDF向量词袋
space_path = "train_word_bag/tfidfspace.dat"   # 词向量词袋保存路径
writebunchobj(space_path,tfidfspace)  # 调用写入函数,持久化对象

红色部分便是匹配上搜索关键词的部分,一个页面能够展示 10
个条目,每个条目的标题就是相应网站网站的的 title,对应网页的
<title></title>
中间的内容,每个条目所对应的剩下文字部分便是网站的 deion,是网页中诸如
<meta name=”deion” content= 的部分。

2.2.6 使用朴素贝叶斯分类模块

常用的文本分类方法:kNN最近邻算法,朴素贝叶斯算法,支持向量机算法

本节选择朴素贝叶斯算法进行文本分类,测试集随机选取自训练集的文档集合,每个分类取10个文档

训练步骤和训练集相同:分词 (文件test_corpus) 》生成文件词向量文件 》
生成词向量模型。

(不同点:在训练词向量模型时,需加载训练集词袋,将测试集生成的词向量映射到训练集词袋的词典中,生成向量空间模型。)代码见文件。

#1,导入分词后的词向量Bunch对象
path = "test_word_bag/test_set.dat"   # 词向量空间保存路径
bunch = readbunchobj(path)  # 调用函数读取bunch对象,赋值给bunch

#2,构建测试集TF-IDF向量空间testspace
testspace = Bunch(target_name=bunch.target_name,label+bunch.label,filenames=bunch.filenames.tdm=[],vocabulary=[])   

#3, 导入训练集的词袋(多这一步,与训练集不同)
trainbunch = readbunchobj("train_word_bag/tfidfspace.dat")  # tfidfspace.dat文件是训练集使用TF-IDF策略并持久化生成的

#4, 使用TfidfVectorizer初始化向量空间模型
vectorizer=TfidfVectorizer(stop_words=stpwrdlst,sublinear_tf=True,max_df=0.5,vocabulary=trainbunch.vocabulary)
transformer=TfidfTransformer()    # 创建一个该类的实例,该类会统计每个词语的TF-IDF权值
testspace.tdm=vectorizer.fit_transform(bunch.contents)   
testspace.vocabulary=trainbunch.vocabulary

#5, 创建词袋并持久化
space_path = "test_word_bag/testspace.dat"  #词向量空间保存路径
writebunchobj(space_path,testspace)  # 调用写入函数,持久化对象

执行多项式贝叶斯算法进行测试文本分类,并返回分类精度,代码见文件

# 执行多项式贝叶斯算法并进行测试文本分类,并返回分类精度

#1,导入多项式贝叶斯算法包
from sklearn.naive_bayes import MultinomialNB #导入多项式贝叶斯算法包

#2,执行预测

trainpath = "train_word_bag/tfidfspace.dat"
train_set = readbunchobj(trainpath)     #导入训练集向量空间

testpath = "test_word_bag/testspace.dat"
test_set = readbunchobj(testpath)        # 导入测试集向量空间

#应用朴素贝叶斯算法
# alpha:0.001   alpha越小,迭代次数越多,精度越高
clf = MultinomialNB(alpha = 0.001).fit(train_set.tdm,train_set.label)

# 预测分类结果
predicted = clf.predict(test_set.tdm)
total = len(predicted);rate = 0
for flabel,file_name,expct_cate in zip(test_set.label,test_set.filenames,predicted):
    if flabel !=expct_cate:
        rate+=1
        print file_name,":实际类别:",flabel,"-->预测类别:",expct-cate

print "error rate:",float(rate)*100/float(total),"%"

搜索引擎的工作原理就是首先将互联网上大部分的网页抓取下来,并按照一定的索引进行存储形成快照,每个条目的标题就是原网站
title(通常是 60 个字节左右,也就是 30 个汉字或者 60
各英文字母,当然搜索引擎也会对于 title
做一定的处理,例如去除一些无用的词),条目的描述部分通常对应原网站
deion。

2.2.7 分类结果评估

机器学习领域的算法评估的指标:
(1)召回率(查全率):检索出的相关文档数和文档库中所有的相关文档数的比率,是衡量检索系统的查全率
召回率=系统检索到的相关文件/系统所有相关的文档总数
(2)准确率(精度):检索出的相关文档数与检索出的文档总数的比率
准确率=系统检索到的相关文件/系统所有检索到的文件总数
(3)Fp-Measure
Fp=(p2+1)PR/(p2P+R),P是准确率,R是召回率
p=1时,就是F1-Measure
文本分类项目的分类评估结果评估:代码见文件

import numpy as np
from sklearn import metrics

def metrics_result(actual,predict):
    print '精度:{0:3f}'.format(metrics.precision_score(actual,predict))
    print '召回:{0:0.3f}'.format(metrics.recall_score(actual,predict))
    print 'f1-score:{0:3f}'.format(metrics.f1_score(actual,predict))

metrics_result(test_set.label,predicted)

#输出形式如
#精度:0.991
#召回:0.990
#f1-score:0.990

当在搜索框中输入关键词时候,会去和其存储网页进行匹配,将符合匹配的网页按照个网页的权重分页进行显示。当然网页的权重包含很多方面,例如广告付费类权重就非常的高,一般会在靠前的位置显示。对于一般的网站,其权重包括网页的点击次数,以及和关键词匹配的程度等来决定显示的前后顺序。

2.3 分类算法:朴素贝叶斯

本节主要讨论朴素贝叶斯算法的基本原理和python实现

搜索引擎会去和网页的哪些内容进行匹配呢?如前面所述,通常是网页的
title、deion 和
keywords。由于关键词匹配的程度越高的网站显示在前的概率较大,因此很多网站为了提高自己的排名,都会进行
SEO 的优化,而 title、deion 和 keywords 是 SEO
优化的重要方面。至于不可描述网站,更是如此。有段时间《中国焦虑图鉴》这篇文章中也提到。由于搜索引擎并不会公开收取以及赌博、黄色网站广告费让他们排到前面。所以这些网站只能利用
SEO,强行把自己刷到前面。直到被搜索引擎发现,赶紧对它们“降权”处理。尽管如此,这些黄色网站如果能把自己刷到前几位一两个小时,就能够大赚一笔。

2.3.1 贝叶斯公式推导

朴素贝叶斯文本分类的思想:它认为词袋中的两两词之间是相互独立的,即一个对象的特征向量中的每个维度都是相互独立的。
朴素贝叶斯分类的定义:
(1),设x={a1,a2,^am}为一个待分类项,而每个a为x的一个特征属性
(2),有类别集合C={y1,y2,……yn}.
(3),计算P(y1|x),P(y2|x),……,P(yn|x)
(4),如果P(yk|x)=max{P1,P2,……,Pn},则x属于yk

— 计算第(3)步的各个条件概率:
(1)找到一个已知分类的待分类集合,即训练集
(2)统计得到在各个类别下的各个特征属性的条件概率估计,即:
P(a1|y1),P(a2|y2),……,P(am|y1)
P(a1|y2),P(a2|y2),……,P(am|y2)
……
(3),如果各个特征属性是条件独立的,根据贝叶斯定理有:
P(yi|x) = P(x|yi)*P(yi)/P(x)
分母对于所有类别为常数,故只需将分子最大化即可

故,贝叶斯分类的流程为:
第一阶段 : 训练数据生成训练样本集:TF-IDF
第二阶段: 对每个类别计算P(yi)
第三阶段:对每个特征属性计算所有划分的条件概率
第四阶段:对每个类别计算P(x|yi)P(yi)
第五阶段:以P(x|yi)P(yi)的最大项作为x的所属类别

由上述分析可以知道 title、deion 和 keywords
等一些关键的网页信息对于不可描述网站来说都是经过精心设计的,和网页所要表述内容的匹配度非常之高。尤其很多网站在国外有些国家是合法的,因此对于经营这些网站的人员来说,优化这些信息一定是必然。我曾经看过一份数据显示在某段时间某搜索引擎前十名中,绝大多数的色情相关的。因此我们可以将其作为关键的语料信息。

2.3.2 朴素贝叶斯算法实现

样例:使用简单的英文语料作为数据集,代码见文件

# 编写导入的数据
def loadDataSet():
    postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
                 ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
                 ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him','my'],
                 ['stop', 'posting', 'stupid', 'worthless', 'garbage'],
                 ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
                 ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
                # 使用简单的英语语料作为数据集,有6个文本

    classVec = [0,1,0,1,0,1]     # 文本对应的类别

    return postingList,classVec  # postingList是训练集文本,classVec是每个文本对应的分类

###########################################################################

# 编写贝叶斯算法(sklearn已有贝叶斯算法包,现在是理解贝叶斯算法原理后,自己编写算法代码)


#(1)编写一个贝叶斯算法类,并创建默认的构造方法

class NBayes(object):     # 创建贝叶斯算法类

    def __init__(self):       #初始化类的属性
        self.vocabulary = []  #词典
        self.idf = 0          #词典的IDF权值向量
        self.tf = 0           #训练集的权值矩阵
        self.tdm = 0          #P(x|yi)
        self.Pcates = {}      #P(yi)是一个类别词典P(yi)的值:{类别1:概率,类别2:概率}
        self.labels = []      #对应每个文本的分类,是一个外部导入的列表
        self.doclength = 0    #训练集文本数
        self.vocablen = 0     #词典词长
        self.testset = 0      #测试集 


#(2)导入和训练数据集,生成算法必需的参数和数据结构

def train_set(self,trainset,classVec):  # 传入训练集文本和对应的分类类别

    self.cate_prob(classVec)    # 计算每个分类在数据集中的概率P(yi),cate_prob函数在下面创建
    self.doclength = len(trainset) # 用len函数计算训练集trainset的文本数,赋给类的doclength属性

    tempset = set()  # 使用set(),初始化一个空的集合:是一个无序不重复元素集
    [tempset.add(word) for doc in trainset for word in doc] #生成词典  ,add是往集合添加元素
    # doc遍历trainset,word遍历doc,再将word添加进tempset集合里
    # 训练集文本trainset实际上是一个矩阵,doc遍历取得向量,即单个文本,word遍历取得文本内的词,再添加进集合
    self.vocabulary = list(tempset) # 将tempset转换为列表list,添加进类的vocabulary属性,即词典
    self.vocablen = len(self.vocabulary) #len函数计算词典的长度(这里的词典实际上是一个不重复的词袋空间)

    self.calc_wordfreq(trainset)  # 计算数据集的词频(word frequency):tf和idf ,调用了calc_wordfred函数,传入训练集trainset
    self.build_tdm()  # 按分类累计向量空间的每维值P(x|yi),调用了build_tdm函数


# (3) cate_prob函数:计算数据集中 每个分类的概率P(yi)

def cate_prob(self,classVec):  # 该函数用于计算每个类别在数据集中的概率,被上面的train_set函数调用
    self.labels = classVec     # classVec是导入的训练集文本对应的类别
    labeltemps = set(self.labels)  # 获取全部分类,set()集合:无序不重复元素集,本例就两类:{0,1}
    for labeltemp in labeltemps:    # 遍历所有分类{0,1}
        self.labels.count(labeltemp)  #统计self.labels里类别的个数:类别0的个数和类别1的个数
        self.Pcates[labeltemp] = float(self.labels.count(labeltemp))/float(len(self.labels))
        # 每种类别个数/类别类别总数:6,在Pcates字典里,创建键值对{'0':概率,'1':概率}


# (4) calc_wordfred函数:生成普通的词频向量  TF-IDF

def calc_wordfred(self,trainset):   # 用于计算词袋(词典)内每个词的词频,被上面的train_set函数调用

    self.idf = np.zeros([1,self.vocablen]) # 全0矩阵,矩阵大小:1x词典长度,self.vocablen是上面计算出的词典长度(词袋长)
    self.tf = np.zeros([self.doclength,self.vocablen]) #构造全0矩阵:训练集文件数x词典数,doclength是上面计算出的训练集文本数:6,vocablen是计算出的词典长度 
    #构造训练集的IDF和TF向量模型,IDF是一行,TF是文档数,行,初始化全为0

    for indx in xrange(self.doclength):  # xrange与range用法相同,结果不同,生成的不是列表,而是生成器,适合数字序列较大时,不用一开始就开辟内存空间
    # indx遍历训练集文本数列表,indx取得的是数
        for word in trainset[indx]: #word 遍历trainset中的每一文本的词,##word取得的是词
            self.tf[indx,self.vocabulary.index(word)] +=1    # 权值矩阵的第index行,第k列,加1
            # 词典列表的index方法,返回word的索引位置k
            #  生成了TF词频矩阵

        for signleword in set(trainset[indx]):  # signleword遍历训练集文本里每一文本构成的集合(取得每一文本不重复的词),
            self.idf[0,self.vocabulary.index(signleword)] +=1  # idf权值矩阵的第k个加1
            #index返回每一文本不重复词的索引位置
            #生成IDF矩阵           
## 实际上本函数生成的是训练集的TF矩阵和词袋的IDF矩阵(绝对数形式,非频率)        


# (5) build_tdm函数:按分类累计计算向量空间的每维值P(x|yi),已知类别为yi,求是x的概率

def build_tdm(self):   #计算P(x|yi),被train_set函数调用

    self.tdm = np.zeros([len(self.Pcates),self.vocablen])  #构造全0矩阵,大小:类别词典长度2(在cate_prob函数里)x 词典长度(train_set函数里)
    sumlist = np.zeros([len(self.Pcates),1])  # 构造全0矩阵:大小:类别词典长度x1
    #统计每个分类的总值,sumlist两行一列

    for indx in xrange(self.doclength):    #indx遍历训练集文本数生成的列表[0,1,2,3,4,5],取得的是数字 

        #将同一类别的词向量空间值tf加总
        #即:tf权值矩阵值,六行,分为两类,同类相加,变为两行
        self.tdm[self.labels[indx]] += self.tf[indx]   # labels[indx]是训练集文本对应类别里的第indx个(在cate_prob函数里)即[0,1,0,1,0,1]里的第indx个,对应tdm的第某行
        # tf[indx]是tf权值矩阵的第indx行(在calc_wordfred函数里)

        #统计每个分类的总值--是一个标量
        sumlist[self.labels[indx]] = np.sum(self.tdm[self.labels[indx]]) 
        #利用np.sum计算tdm矩阵的和,赋值给sumlist矩阵的?
        # sumlist得到的结果:0:总值
                            #1:总值

    self.tdm = self.tdm/sumlist   # tdm即:P(x|yi)=P(xyi)/P(yi)
    #得到的结果tdm是一个两行,词典长列的矩阵,表示着P(a1|yi),P(a2|yi)……
  #tdm是一个向量,sumlist是一个值


(3)-(5)函数都被train_set函数调用  
#####################################################################################



# (6) map2vocab函数:将测试集映射到当前字典

def map2vocab(self,testdata):  # 传入测试集数据 testdata
    self.testset = np.zeros([1,self.vocablen])  #构造全0矩阵,大小:1*词典长度
    for word in testdata:    # word遍历测试集(某个文本)
        self.testset[0,self.vocabulary.index(word)] +=1 # testset矩阵的第k个加1
        # vocabulary.index(word)返回字典的与word匹配的词的索引位置
# 本函数是将测试集文档转换为以频数表示的[   ]矩阵   


# (7) predict函数:预测分类结果,输出预测的分类类别

def predict(self,testset):    #传入测试集数据

    if np.shape(testset)[1] != self.vocablen: #如果测试集长度与词典长度不相等,则退出程序
        print "输出错误"
        exit(0)

    predvalue = 0  #初始化类别概率
    predclass = ""  # 初始化类别名称

    for tdm_vect,keyclass in zip(self.tdm,self.Pcates): 
       #P(x|yi) P(yi)    #      变量tdm,计算最大分类值
    #zip函数将tdm和Pcates打包成元组,并返回元组组成的列表。
    #tdm是P(x|yi),Pacates是类别词典P(yi)

        temp = np.sum(testset*tdm_vect*self.Pacate[keyclass])  #测试集testset乘tdm_vect乘Pcates[keyclass]  ,并求和
        #测试集向量*P
        if temp > predvalue:  
            predvalue = temp
            predclass = keyclass
    return predclass   # 输出预测的类别(概率最大的类别)

#########################################################################

#算法的改进:为普通的词频向量使用TF-IDF策略

#calc_tfidf函数:以TF-IDF方式生成向量空间

def calc_tfidf(self,trainset):        # 传入训练集数据
    self.idf = np.zeros([1,self.vocablen])   #构造全0矩阵,大小:1*词典长度
    self.tf = np.zeros([self.doclength,self.vocablen])  #构造全0矩阵,大小:文本数*词典长度

    for indx in xrange(self.doclength):   #indx遍历文本数生成的列表,取得的是数字      
        for word in trainset[indx]:        #word遍历训练集的第indx个文本里的词
            self.tf[indx,self.vocabulary.index(word)]+=1  #tf矩阵的某个值加1
            #消除不同句长导致的偏差
        self.tf[indx] = self.tf[indx]/float(len(trainset[indx]))  #计算的是频率而不是频数

        for signleword in set(trainset[indx]):
            self.idf[0,self.vocabulary.index(signleword)] +=1
    self.idf = np.log(float(self.doclength)/self.idf)

    self.tf = np.multiply(self.tf,self.idf) # 矩阵与向量的点乘TFxIDF

######################################################################

#执行创建的朴素贝叶斯类,获取执行结果

#coding=utf-8

import sys
import os
from numpy import *
import numpy as np
from NBayes_lib import *

dataSet,listClasses = loadDataSet() 

 # 导入外部数据集,loadDataSet是自己创建的函数,返回值为两个,postingList是训练集文本,classVec是每个文本对应的分类
# dataset为句子的词向量
# listclass为句子所属类别 [0,1,0,1,0,1]

nb = NBayes()  #实例化 NBayes是我们创建的贝叶斯算法类
nb.train_set(dataSet,listClasses) # 训练数据集。train_set是创建的类的函数,用于训练
nb.map2vocab(dataSet[0])   # 随机选择一个测试句 #map2vocab函数将测试集映射到当前词典
print nb.predict(nb.testset)  # 输出分类结果,predict函数用于预测分类结果,输出预测的分类类别

# 最后运行程序,看似没有数据间传递,实则是在类属性中已定义好并赋值给属性

二,语料信息的获取

2.4 分类算法:KNN

KNN算法:计算向量间的距离衡量相似度来进行文本分类

现在其实面临的是一个二分类的问题,即判断一个网站是不可描述网站还是正常的网站。这个问题可以归结为
NLP
领域的文本分类问题。而对于文本分类来说的第一步就是语料的获取。在第一部分也已经分析了,相关语料就是网站的
title,deion 以及 keywords。

2.4.1 KNN算法的原理

1,算法思想:如果一个样本在特征空间的k个最近邻(最近似)的样本中的大多数都属于某一类别,则该样本也属于这个类别,k是由自己定义的外部变量。

2,KNN算法的步骤:

第一阶段:确定k值(就是最近邻的个数),一般是奇数
第二阶段:确定距离度量公式,文本分类一般使用夹角余弦,得出待分类数据点与所有已知类别的样本点,从中选择距离最近的k个样本
夹角余弦公式:cos =AB/|A|*|B|
第三阶段:统计k个样本点中各个类别的数量,哪个类别的数量最多,就把数据点分为什么类别

如何获取这些数据,可以通过 alex
排名靠前的网站,利用爬虫进行获取。本文对于正常数据的获取,选取 alex
排名前 4500 的网站,通过爬虫,提取网页的 title 和 deion 以及 keywords
作为原始文本。对于色情数据的获取亦然,通过爬虫对已经已经积累的 4500
个的站点进行文本收集。由于这部数据是敏感数据,因此数据集无法向大家公开,还请见量。

2.4.2 kNN算法的python实现
#coding=utf-8

#第一阶段,导入所需要的库,进行数据的初始化

import sys
import os
from numpy import *
import numpy as *
import operator
from Nbayes_lib import *

# 配置utf-8输出环境

reload(sys)
sys.setdefaultencoding('utf-8')

k=3

#第二阶段:实现夹角余弦的距离公式

def cosdist(vector1,vector2):
    return dot(vector1,vector2)/(linalg.norm(vector1)*linalg.norm(vector2)) # 夹角余弦公式;AB/|A||B|   

#第三阶段:KNN实现分类器

#KNN分类器

#测试集:testdata;训练集:trainSet;类别标签;listClasses; k:k个邻居数

def classify(testdata,trainSet,listClasses,k):
    dataSetSize=trainSet.shape[0]     #返回样本的行数,(shape返回行数和列数)
    distances=array(zeros(dataSetSize))  #构造一个全0数组,大小为;

    for indx in xrange(dataSetSize):   #计算测试集与训练集之间的距离:夹角余弦
        distances[indx]=cosdist(testdata,trainSet[indx])
        sortedDisIndicies=argsort(-distances)
        classCount={}
        for i in range(k):#获取角度最小的前k项作为参考项
            #按排序顺序返回样本集对应的类别标签
            voteIlabel=listClasses[sortedDistIndices[i]]
            #为字典classCount赋值,相同key,其value加1
            classCount[voteIlabel]=classCount.get(voteIlabel,0) +1

        #对分类字典classCount按value重新排序
        #sorted(data.iteritems(),key=operator.itemgetter[1],reverse=True)
        #classCount.iteritems();字典迭代器函数
        #key ;排序参数;operator.itemgetter(1):多级排序
        sortedClassCount=sorted(classCount.iteritem(),key=operator.itemgetter(1),reverse=True)
        return sortedClassCount[0][0]   #返回排序最高的一项

# 最后使用KNN算法实现文本分类

dataSet,listClasses=loadDataSet()
nb.NBayes()
nb.train_set(dataSet,listClasses)  #使用之前贝叶斯分类阶段的数据集及生成的TF向量进行分类

print classify(nb.tf[3],nb.tf,listClasses,k)

爬虫的实现是一个很大的主题,本文篇幅有限,不在讨论,可以参考已有的一些技术博客。总体来说应对本文场景爬虫是很简单的,即发起一个
HTTP 或者 HTTPS 链接,对返回的数据进行清洗提取即可,使用 python
的一些模块几条语句就可以搞定。我在数据获取过程中使用的是 nodejs
编写的爬虫,每次同时发起 1000 个请求,4500
个站点几分钟就搞定了。由于异步请求是 nodejs
优势之一,如果在时间方面有较高要求的,可以考虑 nodejs(但是 nodejs
异步的编程和常见语言的编程差别较大,学习起来有一定的难度),如果没有建议使用
python,主要是后续的机器学习,python
是最热门的语言,包含众多的基础模块。

2.5 结语

本章讲解了机器学习的两个算法:朴素贝叶斯算法和K最近邻算法

介绍了文本分类的6个主要步骤:
1)文本预处理
2)中文分词
3)构建词向量空间
4)权重策略—-TF-IDF方法
5)朴素贝叶斯算法器
6)评价分类结果

三,分词,去停用词形成词向量特征

在获取一定的文本数据之后,需要对这些原始的数据进行处理,最重要的就是分词。英文分词比之中文的分词要简单不少,因为英文中词与词之间时有明显的间隔区分,例如空格和一些标点符号等。中文的话,由于词语是由一些字组成的,整体要麻烦些,而且还有不同场景下的歧义问题。当然
python 提供了诸如 jieba
等强大的分词模块,非常方便,但是总体来说英文分词还要注意以下几点:

  1. 将每一行单词全部转化为小写,排除大小写的干扰。因为在本文场景下大小写词语所代表的含义基本相同,不予区分
  2. 切词,依据就是空格,逗号等分隔符,将句子切分成一个个的单词。当然由于本文的语料全部来源于网页,这其中词语的分隔都会具有一些网页的属性,比如语料中会由很多特殊的符号,如
    | – _ , &# 等符号,需要进行排除
  3. 排除一些停用词。所谓的停用词通常指的是英语中的冠词,副词等,经过上一步骤切分出来的单词可能会包括
    an,and,another,any
    等。因此需要将这些无意义词去除掉当然你也可以使用 nltk
    中自带的停用词(from nltk.corpus import
    stopwords),但是有的时候会根据具体的应用场景,加入相应的停用词,因此自定义停用词词典可能灵活性更高一些。比如在上一步骤中会切分出“&#”等等符号,因此需要将
    &#
    加入到停用词中。关于停止词,我这里面使用了一个较为常用的停用词字典,同时加入了在网页中一些常见停用词。
  4. 提取词干。由于英文的特殊性,一个词会有多种状态,比如
    stop,stops,stopping 的词干都是
    stop,通常情况所表示的含义都是相同的,只需要 stop
    一个即可。但是对于我们的二分类应用场景来说,我一开始没有做词干的提取因为不可描述网站中的
    hottest 和常见网站中共的 hot
    还是有点差异的。当然这一步可以根据具体的应用场景以及识别结果进行选择。
  5. 排除数字。数字在一些不可描述网站中时经常出现的,但是为了我这边还是将其排除,比如
    1080
    在不可描述网站和正常的网站中出现的概率都很高,表示视频的分辨率,当然这一步也是可选的。当然数字也可以加入停止词中,但是由于数字数量较多,同时比较好鉴别(isdigit()
    函数鉴别即可),因此对于数字的排除单独拿出来。

使用 python 的 jieba 模块结合上述所述的 5
个步骤,得到若干单词,相应代码为:

澳门金沙总站 4

以正常网站和不可描述网站的 deion 为例,对应的词云图如下:

澳门金沙总站 5

👆图2

澳门金沙总站 6

👆图3

可以看到对于正常的网站来说
free,online,news,games,business,world,latest
是较为热门的词汇;对于不可描述网站来说,图中显示较大是对应较为热门的词汇。

有了一个个单词之后,需要将这些单词转化为一些模型能够接受的输入形式,也就是词向量。一种常见的方法就是构建一个
N * M 的矩阵,M 大小是所有文本中词的个数;N
的大小是所有文本个数,在本文的环境中就是 title,deion 或者 keywords
的(即网站的)个数。

矩阵每一行的值,就是经过上述方法切词之后,词库中每一个词在该 title
上出现的频率,当然对于没有在该 title 出现的词(存在于其他 title 中)计为
0 即可。

可以预见,最终形成的是一个稀疏矩阵。Sklearn
也提供了一些方法,来进行文本到数值的转换,例如
CountVectorizer,TfidfVectorizer,HashingVectorizer。由前面的分析可知,title,deion,keywords
是较为特殊的文本,会出现很多关键词的堆积,尤其对于不可描述网站,同时相应的预料数据有限,因此本文使用的是
CountVectorizer 来进行简单的词频统计即可,代码如下:

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图
Copyright @ 2010-2019 澳门金沙总站 版权所有